20,965 research outputs found

    Chromospheric evaporation in sympathetic coronal bright points

    Full text link
    {Chromospheric evaporation is a key process in solar flares that has extensively been investigated using the spectroscopic observations. However, direct soft X-ray (SXR) imaging of the process is rare, especially in remote brightenings associated with the primary flares that have recently attracted dramatic attention.} {We intend to find the evidence for chromospheric evaporation and figure out the cause of the process in sympathetic coronal bright points (CBPs), i.e., remote brightenings induced by the primary CBP.} {We utilise the high-cadence and high-resolution SXR observations of CBPs from the X-ray Telescope (XRT) aboard the Hinode spacecraft on 2009 August 23.} {We discover thermal conduction front propagating from the primary CBP, i.e., BP1, to one of the sympathetic CBPs, i.e., BP2 that is 60\arcsec away from BP1. The apparent velocity of the thermal conduction is \sim138 km s1^{-1}. Afterwards, hot plasma flowed upwards into the loop connecting BP1 and BP2 at a speed of \sim76 km s1^{-1}, a clear signature of chromospheric evaporation. Similar upflow was also observed in the loop connecting BP1 and the other sympathetic CBP, i.e., BP3 that is 80\arcsec away from BP1, though less significant than BP2. The apparent velocity of the upflow is \sim47 km s1^{-1}. The thermal conduction front propagating from BP1 to BP3 was not well identified except for the jet-like motion also originating from BP1.} {We propose that the gentle chromospheric evaporation in the sympathetic CBPs were caused by thermal conduction originating from the primary CBP.}Comment: 9 pages, 5 figure

    Blobs in recurring EUV jets

    Full text link
    In this paper, we report our discovery of blobs in the recurrent and homologous jets that occurred at the western edge of NOAA active region 11259 on 2011 July 22. The jets were observed in the seven extreme-ultraviolet (EUV) filters of the Atmospheric Imaging Assembly (AIA) instrument aboard the Solar Dynamics Observatory (SDO). Using the base-difference images of the six filters (94, 131, 171, 211, 193, and 335 {\AA}), we carried out the differential emission measure (DEM) analyses to explore the thermodynamic evolutions of the jets. The jets were accompanied by cool surges observed in the Hα\alpha line center of the ground-based telescope in the Big Bear Solar Observatory. The jets that had lifetimes of 20-30 min recurred at the same place for three times with interval of 40-45 min. Interestingly, each of the jets intermittently experienced several upward eruptions at the speed of 120-450 km s1^{-1}. After reaching the maximum heights, they returned back to the solar surface, showing near-parabolic trajectories. The falling phases were more evident in the low-TT filters than in the high-TT filters, indicating that the jets experienced cooling after the onset of eruptions. We identified bright and compact blobs in the jets during their rising phases. The simultaneous presences of blobs in all the EUV filters were consistent with the broad ranges of the DEM profiles of the blobs (5.5logT7.55.5\le \log T\le7.5), indicating their multi-thermal nature. The median temperatures of the blobs were \sim2.3 MK. The blobs that were \sim3 Mm in diameter had lifetimes of 24-60 s. To our knowledge, this is the first report of blobs in coronal jets. We propose that these blobs are plasmoids created by the magnetic reconnection as a result of tearing-mode instability and ejected out along the jets.Comment: 22 pages, 10 figure

    Non-Equilibrium Ionization Model for Stellar Cluster Winds and its Application

    Get PDF
    We have developed a self-consistent physical model for super stellar cluster winds based on combining a 1-D steady-state adiabatic wind solution and a non-equilibrium ionization calculation. Comparing with the case of collisional ionization equilibrium, we find that the non-equilibrium ionization effect is significant in the regime of a high ratio of energy to mass input rate and manifests in a stronger soft X-ray flux in the inner region of the star cluster. Implementing the model in X-ray data analysis softwares (e.g., XSPEC) directly facilitates comparisons with X-ray observations. Physical quantities such as the mass and energy input rates of stellar winds can be estimated by fitting observed X-ray spectra. The fitted parameters may then be compared with independent measurements from other wavelengths. Applying our model to the star cluster NGC 3603, we find that the wind accounts for no more than 50% of the total "diffuse" emission, and the derived mass input rate and terminal velocity are comparable to other empirical estimates. The remaining emission most likely originate from numerous low-mass pre-main-sequence stellar objects.Comment: 29 pages, 17 figures. accepted by MNRA
    corecore